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ABSTRACT

This paper reviews some of the most important practical and theoretical issues arising in
the implementation of a stochastic forecasting model for an observed time series of data.
Different general approaches to calculating forecasts are described and an overview of
some the most recent developments in the field of time series analysis and forecasting is
given. Particular emphasis is placed on the importance of model selection biases and on
techniques which allow to limit the effects of model uncertainty.
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1 INTRODUCTION AND NOTATION

Let fYtg � fYt��� � � � � Yt�mg be an m-dimensional observed time series,
forecasting is the problem of predicting the future value of Yt�k, with k � �
and integer, on the basis of the set of information available at time t, Dt �
fD�� � � � �Dtg

�, where Dj , j � �� � � � � t, is an s-dimensional row vector with
s corresponding to the number of variables used to obtain information on fYtg.
Hence, Dt will have dimension �ts���. We will denote this prediction by y�t� k�
with ey�t� k� � �Yt�k � y�t� k�� being the associated prediction error. If, condi-
tional on Dt, E�ey�t� k�� � �, the predictor y�t� k� will said to be unbiased. An
usual yardstick for comparing different forecasts is given by the Mean Squared
Prediction Error (PMSE)

PMSE�y� k� � Ef�ey�t� k��
�g (1)

If the predictor is unbiased, PMSE�y� k� � varf�ey�t� k��g. In the univariate
case (m � �), the predictor which minimizes PMSE�y� k� is the conditional
expectation

�y�t� k� � E�Yt�kjD
t� � G�Dt�� (2)

In the more general multivariate case (m���) the optimality of the predictor�y�t� k�
must be properly reinterpreted in the sense that the PMSE matrix of any other
predictor can be expressed as the PMSE matrix of the conditional expectation
�y�t� k� plus a matrix which is positive semidefinite.

The functional form of G��� depends on the shape of the conditional density
p�Yt�kjD

t�, also called the predictive density. In a strict sense, forecasting can be
then redefined as the problem of calculating the predictive density p�Yt�kjD

t�.
At this stage, two remarks have to be made. First, in general the shape of the
density will not be the same for different values of the lead time k. Second, given
a lead time k, the functional form of the predictive density will not necessarily
remain unchanged as t varies.

In general the shape of G��� is not completely known and has to be estimated
from the observed data. A common approximation is to assume that the function
G is linear giving the predictor

�yl�t� k� � G�t� k�Dt (3)

where G�t� k� has dimension (m�ts) and is given by

G�t� k� � E�Yt�k�D
t���fE�Dt�Dt���g��� (4)



In practical applications the calculations can be simplified by formulating general
assumptions on the dependence structure of the process, such as Markovianity,
which reduce the dimension of the prediction coefficient G�t� k� by causing some
elements of G�t� k� to be equal to 0.
As shown in Catlin (1989), a recursive expression for the Linear Least Squares
Predictor (LLSP) is obtained as

E�Yt�kjD
t� � E�Yt�kjD

t���Dt� � E�Yt�kjD
t���

� cov�Yt�k�DtjD
t���var�DtjD

t������Dt �E�DtjD
t�����

In the case in which the joint distribution of Yt�k and Dt is multivariate normal,
for all t, the LLSP (3) is equal to the conditional expectation of Yt�k given Dt.
Aim of this paper is to analyse some of the main problems which arise in the con-
struction of a stochastic model for forecasting purposes. In section 2 a description
of the possible general approaches to the problem of estimating the shape of G���
is given while some specific issues related to forecasting in the framework of
state-space models are dealt with in section 3. Section 4 is concerned with the
calculation of prediction intervals as a measure of uncertainty for the obtained
forecasts, conditional on the assumption that the data generating mechanism is
known. The effect of misspecification errors at the model selection stage is the
subject of section 5. Section 6 concludes.

2 APPROACHES TO FORECASTING

In this section we will examine the different modeling approaches which can
be adopted in order to estimate the function G���

1. Parametric methods

(a) Linear models (ARMA)

(b) Non-linear models

2. Non-parametric methods

In the first case, the functional form of G��� is assumed known but its parameters
have to be estimated while, in the second case, we do not formulate any assump-
tions on the functional form ofG��� whose shape has to be estimated numerically
from the data.

2.1 Linear ARMA models

Linear Autoregressive Moving Average (ARMA) models (Box and Jenkins,
1970) have been successfully applied in many situations for modeling economic



and environmental phenomena. Several applications to hydrological problems
have also been proposed in the literature (e.g. Claps et al., 1993). The book by
Piccolo and Vitale (1981) provides an introductory reading to the topic while a
more detailed account is given by Brockwell and Davis (1987).

Consider a linear ARMA(p,q) model for an univariate series fYt� t � �� � � � � Tg
with E�Yt� � �

�p�B�Yt � �q�B�Zt

where Zt�N��� ��z � is a serially uncorrelated white noise process and

�p�B� � �� ��B � ��B
� � � � �� �pB

p

�p�B� � �� ��B � ��B
� � � � �� �qB

q

are polynomials in the backward operator B having no common zeros. The model
is said to be invertible if ��B���� for jBj � �. An invertible ARMA model always
admits the AR(�) representation

Yt � ��Yt�� � ��Yt�� � � � �� Zt (5)

This can be rearranged to give

Zt � ���B�Yt � Yt � ��Yt�� � ��Yt�� � � � � (6)

where ���B� � �p�B���q�B�. In (6) current innovations are expressed as a lin-
ear function of the history of the observed process up to the infinite past, for some
sequence of weights f�ig such that

P�
i�� j�ij � �. Similarly, if ��B���� for

jBj � � the model is said to be stationary and the following MA(�) representa-
tion holds

Yt � 	��B�Zt (7)

with 	��B� � �p�B���q�B�, leading to the linear filter

Yt �
�X
i��

	iZt�i�
�X
i��

j	ij �� (8)

As we will see more closely in the next section, in general, for a non-linear pro-
cess, this linear filter representation will be replaced by some non-linear function
g�� � � � Zt��� Zt�.

When building forecasts from an ARMA model, invertibility and stationarity
are crucial properties. While it is true that a given ARMA model has a unique



covariance structure, the converse is not true. However, although there exists
a multiciplity of ARMA models possessing the same autocovariance function,
there will be only one stationary invertible model which has a given autocovari-
ance function. Furthermore, as shown in Box and Jenkins (1970), the invertibility
condition ensures us that the dependence of the estimated innovations �zt on the
estimated initial values f�z�� � � � � �zqg will tend to decrease rapidly as t increases.

Let us assume to know all the past history of the process

Dt � f� � � � y��� y�� y�� � � � � ytg�

The k-steps ahead minimum PMSE predictor for an ARMA process is recursively
generated from known past values yt�i of the series and past values zt�i which,
because of the invertibility condition, can also be considered as known

�yt�k � E�

pX
i��

�iYt�k�i � Zt�k �

qX
i��

�iZt�k�ijD
t�

�

pX
i��

�iE�Yt�k�ijD
t� �E�Zt�kjD

t��

qX
i��

�iE�Zt�k�ijD
t�

where

E�Yt�k�ijD
t� �

�
yt�k�i for i�k

�yt�k�i for i� k

E�Zt�k�ijD
t� �

�
zt�k�i for i�k

� for i� k

From the MA(�) representation in (8) it follows that the prediction error is given
by

ey�t� k� � Zt�k � 	�Zt�k�� � � � �� 	k��Zt�� (9)

with prediction variance

var�ey�t� k�� � ��z �� � 	�
� � 	�

� � � � �� 	�
k��� (10)

which increases with the lead-time k. In practical applications, the parameters 	i
are not known and have to be replaced by their estimates. In a multivariate setting
an analogous result holds for Vector ARMA processes (Reinsel, 1997; Lütkepohl,
1993).



2.2 Non-linear models

In this paragraph we will examine some of the problems arising when we use
non-linear models for forecasting purposes. Before moving to the analysis of
some technical issues arising in forecasting from non-linear models, we will try
to make clear what is respectively meant by a linear and a non-linear model.

2.2.1 Non-linear models: theoretical issues on non-linearity

It is well known that any stationary time series fYtg with a purely continuous
spectrum can be represented in the mean square convergent bilateral series

Yt �

�X
i���

giZt�i (11)

where fZtg is a sequence of uncorrelated random variables. As pointed out by
Priestley (1980), this gives us a linear representation for fYtg but does not consti-
tute a model since the joint distribution of the fZtg is, to a large extent, unspeci-
fied. Strictly, a linear model for fYtg is a representation of the form (11) in which
the Zt are strictly independent. In particular, it can be shown (Nisio, 1960) that
any stationary time series fYt� t � ����� � � � g can be approximated, in a certain
sense, by an almost surely convergent polynomial representation of the form

Yt �
X
p

X
i����� �ip

ai����� �ip

pY
l��

Zt�il (12)

with fZt� t � ����� � � � g being a sequence of i.i.d. random variables. If the
summations over the ij range from �� to �, we say that the representation is
two-sided while, if they range each over the interval (0,�), the representation is
then said to be one-sided. Furthermore, if p � �, fYtg is defined to be a linear
time series while, for p � �, fYtg is called a non-linear time series.

Some special properties characterize Gaussian processes. First, it can be shown
that any stationary Gaussian time series admits a two-sided linear representation.
Second, any stationary Gaussian time series fYtg admits a one-sided linear repre-
sentation if it has a purely continuous spectrum whose density f���

a) is positive almost everywhere,

b) satisfies the Paley-Wiener condition
R �
�� ln f�
�d
 � ��,

and Zt is measurable with respect to the �-algebra Bt generated by Ys� s � t. For
more general stationary time series the situation is not completely resolved. The
interested reader may refer to Rosenblatt (1971) for more details.



2.2.2 Non-linear models: practical issues

The first consideration which has to be made, when trying to give an overview
of the problems which arise when forecasting from non linear models, is that
general solutions are not available but each different non-linear structure requires
an ad hoc treatment. Nevertheless, some general difficulties are common to many
of the non-linear models used by statisticians and practitioners

a) stochastic properties of the model are often unclear,

b) calculation of k-steps ahead forecasts is difficult or, in many cases, not pos-
sible at all,

c) it is not easy to verify the invertibility of the model.

A well known result for non linear models states that the prediction variance
var�ey�n� k�� is monotone in the lead time k. This will not in general be true
for non-linear models. Some theoretical results and a discussion are given by
Tong (1990).

A rather general model structure encompassing a wide range of non-linear
processes is defined as

Yt � m�Dt�j ���� � ��Dt�j ����Zt (13)

where fZtg is a series of zero mean i.i.d. random variables and �� and �� are
vectors of unknown parameters. The functions m��� and ���� are known with
E�YtjD

t�j� � m�Dt�j���� and var�YtjD
t�j� � ���Dt�j����var�Zt�. An

usual convention is to assume var�Zt� � �. Several models can be obtained as a
special case of (13) for different choices of the m��� and ���� functions.

Directly from (13), assuming that ���� is constant and equal to unity and that
the conditional mean is a function only of past realizations of the process, we
obtain the class of non-linear autoregressive (NLAR) models with additive noise

Yt � m�Yt��� � � � � Yt�p� � Zt (14)

with m 	 �p��. These models are invertible by definition. Recursive formu-
lae for the calculation of the predictive density and its expectation are given by
Tong(1990). Different choices of m��� yield some well known non-linear models.

In Threshold AutoRegressive (TAR) models the conditional mean function
m��� is piecewise linear and the conditional variance ����� is set equal to the iden-
tity function. Let Kt be an appropriately chosen threshold variable whose lagged



values influence the actual state of the system and fR�� � � � � Rlg a partition of the
real line �. A TAR�l� p�� � � � � pl� model for fYtg can be written as

Yt � �
�j�
� �

pjX
i��

�
�j�
i Yt�i � Z

�j�
t (15)

conditional on Kt�d�Rj , with d � �, where fZ�j�
t g are heterogeneous white

noise sequences with zero mean and finite variances, each being independent of
fYtg. The model structure in (15) can be generalized in order to allow for exoge-
nous inputs fWtg by considering the class of Open Loop Threshold AutoRegres-
sive (TARSO) models (Tong & Lim, 1980)

Yt � �
�j�
� �

pjX
i��

�
�j�
i Yt�i �

rjX
i��

�
�j�
i Wt�i � Z

�j�
t (16)

for Kt�d�Rj . Successful applications of threshold models in hydrology can be
found in Tong & Lim (1980) and Tsay (1998). In a recent paper, Amendola &
Storti (1999) suggest using a TARSO for analysing the rainfall-flow process. The
inherent non-linearity of this relationship is typically due to the effect of variations
in the catchment’s moisture conditions. The modeling procedure proposed in the
paper is illustrated by means of an application to data from a small basin in South-
ern Italy, Sarno river at San Valentino Torio (SA, Italy). The state-dependent na-
ture of the process is captured by using the Antecedent Precipitation Index (API)
as a threshold variable (Fig. 1). Also, their model allows for different autoregres-
sive orders within each regime in order to reproduce the changing behaviour of the
system as the API crosses various thresholds. Although the catchment analysed in
the paper has a reduced extension (42 km�), the TARSO model gives a satisfactory
forecasting performance (Fig. 2). In general, threshold autoregressive models are
particularly useful for reproducing asymmetries in the relationship between past
information and the conditional mean of a time series. Forecasting from models
of this class does not create particular problems provided that the lead time k does
not exceed the value of the delay d, k�d. If k � d we do not have sufficient
information to identify the regime in which the process will be situated at time
t � k, unless we build a forecasting model for the threshold variable Kt�d. It is
however worth noting how, using predicted values of Kt�d, we are going to intro-
duce into the model an additional source of uncertainty which can be not easily
controllable.

An alternative to threshold models is given by Switching Regime models (Hamil-
ton, 1989) in which regime changes are regulated by the transition probability of
an hidden Markov chain and not by lagged values of a threshold variable.
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Figure 1: Antecedent Precipitation Index (mm/d) from 1.1.74 to 8.3.78; River
Sarno at San Valentino Torio (SA, Italy).

The general class of NLAR models described in (14) enjoys some attractive
probabilistic properties. Namely, assume that

a) the initial values Yi � yi are known for i � �p� �� � � � ���� �,

b) m��� is bounded on compact sets,

c) m�y� � aTy � o�kyk� as kyk	� and provided that aTy is stable,

d) the density of Zt is positive everywhere and E�jZtj� ��.

These are sufficient conditions for the existence of a stationary distribution for
Y� � fY�� Y��� � � � � Y�p��g such that if Yt is started in this distribution, it is
strictly stationary. The above conditions also imply that the model is geometri-
cally ergodic and strongly �-mixing. The mixing property, in turn, allows to apply
central limit theorem for strongly mixing processes (Tjøstheim, 1994).

A different kind of non linearity arises from the specification of a parametric
model for the conditional variance. In Generalized AutoRegressive Condition-
ally Heteroskedastic (GARCH) models (Bollerslev, 1986) the conditional mean is
constant and equal to zero while the conditional variance is a linear function of
past squared observations and past conditional variances

���Dt��� � a� �

pX
i��

aiy
�
t�i �

qX
i��

bi�
��Dt�i��� (17)
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Figure 2: 3-hours-ahead forecast (dashed line) and observed data (solid line) for
the high flow period starting October 10, 1976 and ending February 14, 1977
(m�/s); River Sarno at San Valentino Torio (SA, Italy).

with a� � �, ai�� (for i=1,� � � ,p), bj�� (for j=1,� � � ,q ), p�� and q��. Models
of this kind are often specified for the residuals from a time series model for
the conditional mean in order to capture the changing conditional variance of the
process.

It is possible to define a third class of models, the so called mixed non-linear
models, that are characterized by the presence of non-linear effects in both the
conditional mean and variance functions. As an example consider the class of Self
Exciting Threshold Autoregressive Models with AutoRegressive Conditional Het-
eroskedasticity (SETAR-ARCH) proposed by Li & Lam (1995). Non-linearities
in both m��� and ���� also characterize the well known family of BiLinear (BL)
models (Granger & Andersen, 1978). A BL model has the general form

Yt � �� �

pX
i��

�iYt�i �

qX
i��

�iZt�i �

rX
j��

sX
k��


jkYt�jZt�k (18)

where the i.i.d. errors Zt are usually, but not always, assumed to be zero mean,
the �� � and 
 are real unknown constants with �� � �. The model can be consid-
ered as an extension of an ARMA(p,q) structure in which the non-linearity stems
from the interaction terms 
jkYt�jZt�k, for j=1,� � � ,r and k=1,� � � ,s. A difficulty
commonly arising with BL models is that it is often not possible calculate explicit
expressions for the conditional mean and variance specifications.
Evaluation of point predictions for BL models is quite straightforward provided



that the process is invertible. Unfortunately sufficient conditions for invertibility
are available in isolated cases only and it is not easy to verify them in practice.
If the process is not invertible we are going to incur problems analogous to those
described for ARMA models.

In general, it is possible to specify conditions analogous to �a� � �d� also for
models characterized by a time varying conditional variance (Masry & Tjøstheim,
1995). Results present in the literature refer mainly to ARCH-related models
(Diebolt & Guegan, 1991; Bouguerol & Picard, 1992; Rudolph, 1998).

2.3 Non-parametric approach

Consider again the general model structure (13). In many situations it is not
possible to achieve a reliable identification of the parametric specifications for
m��� and ����. This can happen due to several reasons, such as lack of background
knowledge on the phenomenon or reduced availability of data. However, in cases
in which m��� and ���� are unknown, we can still consider estimating them by
using non-parametric procedures.

In the simple case of a constant conditional variance, m�Dt�j� can be esti-
mated by direct application of standard non-parametric techniques such as Kernel
and local polynomial regression methods (for a review see Härdle et al., 1997).
In this context calculation of 1-step ahead forecasts is relatively straightforward.
Some modifications are required in order to use non-parametric techniques for
the purpose of obtaining multi-step ahead predictions. Referring to the case of
a NLAR model of order one with additive errors, Härdle (1990) and Härdle and
Vieu (1992) proposed using the ordinary Nadaraya-Watson Kernel estimator to
estimate E�Yt�kjY

t� directly. The estimator they use is

�mh�k�y� �

PT�k
t�� Kf�y � Yt��hgYt�kPT�k

t�� Kf�y � Yt��hg
(19)

where K��� is a kernel function with bounded support and h is the bandwidth. For
more details on Kernel smoothing see Härdle (1990). Chen and Hafner (1995)
propose an alternative procedure which makes use of the information contained
in intermediate variables fYt��� � � � � Yt�k��g in order to estimate E�Yt�kjY

t�.
Their proposal is based on a multistage Kernel smoother which is shown to have
a smaller PMSE than (19).

Various non parametric approaches also exist for joint estimation of m��� and
���� in the more general case of a non-constant conditional variance. A very
widely diffused approach is based on the direct estimator

���d�y� � �v�y�� f �m�y�g� (20)



where �m�y� and �v�y� are respectively a regression estimator (e.g. a Kernel) for
m�y� and v�y� � E�Y �jDt��� (Härdle and Tsybakov, 1997). The main problem
with this approach is that the estimated conditional variance is not always non-
negative. Furthermore it can produce a substantially large bias. In order to over-
come these difficulties, Fan & Yao (1998) suggest an alternative procedure based
on the application of local linear regression techniques to the squared residuals
obtained from the model for the conditional mean. Some proposals for the ap-
plication of non-parametric methods in order to estimate the full one-step ahead
predictive density have also arisen in the literature (Robinson, 1983; Gallant e
Tauchen, 1989).

Despite their flexibility, non-parametric procedures also suffer from some draw-
backs. First, the asymptotic mean squared error of non-parametric estimates is
larger than that of parametric ones and tends to increase with the dimension m of
the model. This leads to consider a second more serious problem, the so called
curse of dimensionality. As m increases, an extremely large sample size is re-
quired to get a sufficient number of points in the unit cube of the resulting m-
dimensional space. Third, non-parametric estimates are less easily interpretable
than those obtained from a parametric model in which a precise physical mean-
ing is often associated to the estimated parameters. Furthermore, it is important
to recognize that non-parametric procedures are not assumption free. As in the
parametric case, for univariate models, we still need to identify the relevant lags
of the response variable or, if the model is multivariate, the relevant explana-
tory variables to be included in the model. Furthermore the application of a non-
parametric technique often requires assumptions about smoothing parameters and
weight functions which can play a crucial role in determining the final perfor-
mance of the estimator. If we undersmooth the observed process, in the limit our
estimated curve will tend to reproduce the original data being perturbated by the
error component. In the opposite case, if an excessive amount of smoothing is per-
formed, some relevant information will be inevitably lost. One of the most impor-
tant issues in the application of Kernel estimators is the selection of the bandwidth
parameter h. To this purpose, several data driven procedures have been proposed
in the literature like, for example, the leave-one-out cross validation criterion ex-
tended by Härdle and Vieu (1992) to the case of dependent observations. A related
problem is the determination of the number of hidden neurons in a feed-forward
neural-network which, as shown in Giordano & Perna (1999), can be considered
as a smoothing parameter.

A hybrid approach, which allows to conjugate advantages of both the paramet-
ric and the non-parametric approach, is to specify a parametric functional form
only for some of the regressors in the model while using non-parametric tech-



niques to estimate the dependence relationship from the other regressors. Some
applications are illustrated in Engle et al.(1986) and Shumway et al.(1988).

3 FORECASTING IN STATE SPACE MODELS

The general non-linear state space model can be written as

Yt � Ct�Xt� rt� (21)

Xt � At�Xt���qt� (22)

where Ct��� and At��� are (m�1) and (n�1) known vector functions, Xt is a
(n�1) state vector and frtg (m��) and fqtg (n��) are white noise series of mu-
tually independently distributed errors. Also the distribution functions of the error
terms frtg and fqtg are assumed to be known for all t but not necessarily Gaus-
sian 2. Forecasting can then be redefined as the problem of calculating the density
p�Yt�kjD

t�. The first step is to obtain the one step-ahead predictive density of
the state

p�Xt��jD
t� �

Z ��

��
p�Xt���XtjD

t�dXt

�

Z ��

��
p�Xt��jXt�p�XtjD

t�dXt (23)

(24)

which can then be recursively updated to give the k-steps ahead state predictive
density

p�Xt�kjD
t� �

Z ��

��
p�Xt�kjXt�k���p�Xt�k��jD

t�dXt�k��� (25)

Finally, the observation predictive density p�Yt�kjD
t� can be calculated solving

the integral

p�Yt�kjD
t� �

Z ��

��
p�Yt�kjXt�k�p�Xt�kjD

t�dXt�k (26)

where p�XtjD
t� is the filtering density obtained as

p�XtjD
t� �

p�YtjXt�p�XtjD
t���R ��

�� p�YtjXt�p�XtjDt���dXt

� (27)

2The model structure in (21)-(22) can be easily generalized to allow for exogenous deterministic
inputs.



The moments of the predictive density can be obtained by numerically or analyti-
cally solving an integral of the kind

gt�kjt � E�g�Yt�k�jD
t� �

Z ��

��
g�Yt�k�f�Yt�kjD

t�dYt�k

for a generic function g���. Also the unknown parameters in � can be estimated
by maximizing the likelihood function which can be written out as

L�YT 
�� �

TY
t��

p�YtjD
t���

�
TY
t��

Z ��

��
p�YtjXt�p�XtjD

t���dXt� (28)

In the case of a linear Gaussian state space model with additive errors, under
some general conditions, the Kalman filter (Kalman, 1960) provides the optimal
solution to the problem of estimating the predictive density p�Yt�kjD

t�. In the
non-linear and/or non-Gaussian case we need to solve the recursions (24)-(27).
Analytical solution of the above integrals is feasible only in isolated cases (see
West & Harrison, 1997). More frequently it is necessary to resort to numerical
procedures based on

(a) numerical integration algorithms, e.g. Kitagawa (1987) and Storti et al.
(1998) for an application to rainfall forecasting

(b) simulation techniques such as Markov Chain Monte Carlo (MCMC) meth-
ods. See Carlin et al. (1992) and Mariano & Tanizaki (1998) for applica-
tions to state space modeling and Gilks et al.(1996) for a general introduc-
tion.

Due to their higher degree of flexibility with respect to numerical integration tech-
niques, in the past few years research has focused mainly on simulation based
techniques. Furthermore MCMC techniques are computationally more efficient
than numerical integration. However, especially in high dimensional problems,
these procedures can still be computationally intensive requiring long elaboration
times. The increasing computing power of modern PCs is gradually removing
obstacles of this nature.

Storti et al.(1998) have applied non-linear state space techniques to short term
rainfall forecasting. They suggest using a two-stage modeling procedure based on
the definition of a series of disjoint reference temporal windows (RTW) in which
the observations are assumed to be i.i.d.

fY�� � � � � Ykg� fYk��� � � � � Y�kg� � � � � fYT�k��� � � � � YT g�
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Figure 3: Total rainfall depth. Observations are taken at intervals of 20 minutes
(Laverna, 24.10-6-11.1966).

with fYt� t � �� � � � � Tg being a time series of univariate rainfall observations
taken at intervals of 20 minutes from 24.10.1966 to 6.11.1966 at Laverna, Italy, in
the Arno Basin (Fig. 3).

At the first step, the number of occurrences observed in each RTW is used to
estimate the probability of occurrence of rainy spells with intensity exceeding a
given threshold within the next RTW. This is accomplished by applying NI tech-
niques in order to estimate a non-linear state space model for the probability of
occurence pt�� (Fig. 4). Let �p�Nt��jY

t� be the estimated probability mass func-
tion of the number of occurrences within the RTW (Nt��), given past information
Y t. At the second step, an estimate of the predictive density function of the total
rainfall depth p�Jt��jY t� is obtained solving the integral

�p�Jt��jY
t� �

Z
�p�Jt��jNt����p�Nt��jY

t�dNt��� (29)

The predicted and filtered values of the total rainfall depth in each RTW have been
reported in (Fig. 5).

4 PREDICTION INTERVALS

Point forecasts can be misleading if an adequate measure of uncertainty is not
provided together with the calculated forecast. A measure of predictive uncer-
tainty is often given in the form of a prediction interval for the point forecast.
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Figure 4: Filtered and predicted probabilities of occurrence for k=9 corresponding
to a RTW of 3 hours (from 8.00 pm of 1.11.1966 to 4.00 am of 4.11.1966)

Also prediction intervals can be used to compare forecasts from different meth-
ods more thoroughly. Formally, a prediction interval (PI) can be defined as an
interval forecast associated with a specified probability. A PI is associated with
an estimate of an unknown future value that can be regarded as a random vari-
able at the time the forecast is made. In order to make correct inferences on this
random variable we need to estimate its probability density function conditional
on current information Dt. It follows that, strictly speaking, to set a PI for yt�k

we need to know the distribution of the forecast error ey�t� k� conditional on Dt.
In this section a description of some general approaches to the calculation of PIs
is given. A distinction is made between approaches based on the application of
theoretical formulas and empirical techniques based on simulation or resampling.
A comprehensive review is given in Chatfield (1993).

A common practice is to assume that the forecast is unbiased with PMSE given
by E�ey�t� k�

�� � var�ey�t� k�� and that the forecast error is normally distributed.
Under these assumptions, a 100(1-�) % PI for yt�k is given by

y�t� k��z���

q
varfey�t� k�g (30)

where z��� denotes the appropriate percentage point of a standard normal dis-
tribution. When var�ey�t� k�� has to be estimated (as it happens in common ap-
plications) some authors (e.g. Harvey, 1989) suggest replacing the standardized
normal distribution percentile z��� by the same order percentile t��� of a t distri-
bution with an appropriate number of degrees of freedom. However this makes
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Figure 5: Filtered values and 1-step ahead forecasts of the total rainfall depth for
k=9 corresponding to a RTW of 3 hours (from 8.00 pm of 1.11.1966 to 4.00 am
of 4.11.1966)

little difference except for very short series (e.g. T � ��). For many models, the
normality assumption of 1-step ahead forecast errors will be only asymptotically
verified. Differently, for moderate sample sizes, the 1-step ahead predictive den-
sity will not in general be normal when model parameters have to be estimated
from the same data used to calculate predictions (e.g. see Phillips, 1979). In
these cases, before resorting to a normal approximation, it would be advisable to
check the rate of convergence of the asymptotic approximation or at least analyze
the empirical distribution of past forecast errors in order to quantify the deviation
from normality.

When the normal approximation fails and ad hoc theoretical formulas are not
available, the empirical distribution of errors can be used to estimate PIs. One
possible way of exploiting the observed distribution of errors to set PIs is to use
a Bootstrap procedure (for an introduction see Efron & Tibshirani, 1993). This
class of resampling procedures involves simulating several pseudo-random repli-
cates from the empirical distribution of past fitted errors in order to approximate
the theoretical distribution of innovations. The procedure has the advantage of
being free from distributional assumptions and easy to implement on a PC but
can involve a considerable computational burden. In the past few years there has
been a considerable number of papers proposing applications of Bootstrap pro-
cedures in the field of time series analysis. Excellent reviews are given by and
Shao & Tu (1995) and Davison & Hinkley (1997). Among the others, Thombs



& Schucany (1990) illustrated an application to forecasting from AR processes,
Kunsch (1989) and Politis & Romano (1994) explored the possibility of extend-
ing Bootstrap techniques to non-linear models and, more recently, La Rocca &
Vitale (1999) have analysed the properties of Bootstrap estimates for BL models
parameters.

An alternative approach consists in simulating several replicates of random
innovations from a given probability time series model, instead of using the em-
pirical distribution of past within-sample prediction errors. The set of replicates so
obtained are sometimes called pseudodata. The main drawback of this approach
is that it still relies on distributional assumptions and, as the Bootstrap method, is
computationally intensive.

In the context of state space models the Bayesian forecasting procedures which
have been illustrated in section (3) offer a natural approach to the problem of set-
ting prediction intervals for yt�k. The availability of the full predictive density
p�Yt�kjD

t� allows to set prediction bounds based on the percentiles of the esti-
mated density with no need to resort to approximate distributional assumptions
such as normality.

5 SOURCES OF UNCERTAINTY IN FORECASTING: REDUCING THE

EFFECT OF MODEL UNCERTAINTY

In general when forecasts are calculated on the basis of a fitted statistical model
we are implicitly assuming that

a) the identified model reflects the true data generating process,

b) the model parameters are exactly known,

c) the data are observed exactly.

Overall, the effects of parameter driven uncertainty seem likely to be smaller than
those due to model uncertainty and to the presence of unexplained random vari-
ation in observed variables which can arise due to different reasons (uncorrectly
measured variables, unknown initial values, outliers, exogenous variables in mul-
tivariate models have to be forecast). Statistical theory provides us tools for the
treatment of outliers and for dealing with unknown initial values and measurement
errors in the data. Measurement errors, for example, fit naturally in the context
of state space models and, by means of slight modifications to the usual filtering
algorithms, unknown initial conditions can be easily handled.

More severe consequences are likely to be produced by model misspecification
errors. Although model uncertainty plays a crucial role in the forecasting process,



the effect of model misspecification can be hardly measured, even because we
actually do not know the true model (if there is one). However, different solutions
have been proposed in the statistical literature in order to limit the effects of model
misspecification errors.

5.1 Mixture models

One possible approach for reducing the dependence from having to assume
that there is a single true model, is to use a model which is actually a mixture
of various different models with a prior probability weight associated to each of
them. The observed data are then used to recursively update the weights. At
each step, the Bayes rule is applied for calculating the correspondent posterior
probabilities. Several applications of this approach in a state space setting have
been illustrated by West & Harrison (1997). The class of models they propose,
called mixture models, can be considered as a special case of the more general
and well known technique of Bayesian model averaging. A recent review and
methodology discussion for Bayesian model averaging is given by Draper (1995).
Consider the linear state space model, or Dynamic Linear Model (DLM) in the
terminology of West & Harrison (1997),

Yt � CtXt � rt (31)

Xt � AtXt�� � qt (32)

where qt�WN���Qt�, rt�WN���Rt�, E�rt�q
�
s� � �, 
t� s, E�rt�X

�
�� � �,

E�qt�X
�
�� � �. Also assume that �X�jY���N�x��P��. Given appropriately

defined initial conditions, the model is uniquely identified by the quadruple

Mt 	 fC�A�R�Qgt (33)

Let ��� be a vector containing all the defining parameters of the model that
are possibly subject to uncertainty. The notation Mt��� indicates that the model
identified by the quadruple in (33) is parameterized by �. Assume now that for
some ����, Mt���� holds for all t with �� unknown. Usual methods, e.g. the
ordinary Kalman filter, estimate the density p�Xtj��D

t�. Starting with an initial
prior density p��jD�� for � we can recursively calculate

p��jDt��p��jDt���p�Ytj��D
t���

and use the conditional state density p�Xtj��D
t� to obtain the unconditional state

density

p�XtjD
t� �

Z
�

p�Xtj��D
t�p��jDt�d�



In practice the densities for � are mass functions since the parameter space
is usually assumed to be a finite discrete set � � f��� � � � ��rg. The resulting
model is called a multi-process class I model by West & Harrison (1997). The fi-
nal predictive density is obtained as a discrete probability mixture of the predictive
densities associated to the components Mt��i�, i � �� � � � � r, which in this case
have been assumed to be Gaussian. Multi-process class II models are defined by
West & Harrison (1997) as a generalization of multi-process class I models to
situations in which the parameter vector �t is allowed to be time varying.

5.2 Combination of forecasts

In order to reduce the dependence of the obtained predictions from an under-
lying forecasting model, a technically different solution is to calculate forecasts
from different models and then obtain the final prediction by linearly combining
the forecasts singularly obtained

f��n� k� �
rX

i��

wifi�n� k�

where the fi�n� k�, i � �� � � � � r, are the forecasts to be combined and the wi
are the combining weights. More details on this topic will be given in the next
section.
Empirical evidence and theoretical results both suggest that in many cases fore-
cast accuracy could be sensibly improved through the combination of multiple
individual forecasts. A review of forecasts combination methods has been given
by Clemen (1989) and, more recently, by Diebold & Lopez (1996). Since com-
bining methods do not involve a formal procedure for identifying the underlying
data generating process, theoretical variance expressions are not easily derived
unless simple combining functions are considered. However, simulation studies
can be used to assess and compare the accuracy of different methods (e.g. Taylor
& Bunn, 1999). The results obtained show that simple combination methods often
work reasonably well relative to more complex combinations. In this section we
will give a short account of the most common procedures for combining forecasts
and of the problems associated to their practical implementation.

The first method we consider is based on the application of simple ordinary
least squares regression techniques (OLS). In the followings we will refer to this
method simply as to the OLS combining method. Let

ft�k � f�� f��t� k�� � � � � fr�t� k�g

be a vector containing the r constituent forecasts to be combined and

� � f��� ��� � � � � �rg
�



a vector of weights. We can write

Yt�k � ft�k� � �t�k (34)

where �t�k is the error term, i.i.d with zero mean and uncorrelated with ft�k.
Furthermore, let Ft�k�� be the �t � k � ����r � �� matrix of past forecasts.
Ordinary least squares can be used to obtain an unbiased estimate of �

�� � ��Ft�k����Ft�k������Ft�k����Yt�k��� (35)

The predictor of Yt�k, given ft�k, can then be expressed as

y�t� k� � ft�k
�� (36)

From the unbiasedness of �� it follows that the PMSE of the predictor (36) is given
by

E�Yt�k � y�t� k��� � ��� fft�k�F
t�k���Ft�k�����f �t�k � �g

where ��� � var��t�.
The minimum variance method (Bates and Granger, 1969) is equivalent to the

OLS method with the restriction that �� � � and the coefficients sum to unity,Pr
i�� �i � �. An estimate of � can be obtained estimating the regression model

in (34) subject to the constraint R� � �, where R is a ���r � �� matrix such
that R�� � �� R�j � � for j � � and with zeros elsewhere, � � f� �g�. The
constrained minimization problem is solved applying the technique of Lagrange
Multipliers (Taylor and Bunn, 1999) to give the estimator

��
�
� �� � ��Ft�k����Ft�k�����R�fR�Ft�k���Ft�k�������R�g���R�� � ���

Let M � �R��Ft�k����Ft�k�����R����. The PMSE of the predictor

y��t� k� � ft�k
��
�

(37)

is

E�Yt�k � y��t� k��� � ��� fft�k�I� ��Ft�k����Ft�k�����R��I� ���� M����

MR���Ft�k����Ft�k�����f �t�k � �g

with bias and variance of the prediction error given respectively by

var�Yt�k � y��t� k�� � ��� fft�k�I� ��Ft�k����Ft�k�����R�MR�

��Ft�k����Ft�k�����f �t�k � �g (38)

E�Yt�k � y��t� k�� � ft�k��F
t�k����Ft�k�����R�M� (39)



where � � �R����; Evaluation of the bias expression in eq. (39) is not an easy
task and, at the same time, it is necessary for an assessment of the uncertainty
associated to ��. A common practice is to assume that the forecasts are unbiased
i.e. that the restrictions on the unknown coefficients are verified and R� � �.

An alternative to the previous procedures is to calculate a simple average of the
forecasts. This method can be also considered as a restricted least squares problem
with the restriction matrixR equal to the identity matrix and the restriction vector
� having a first entry of zero and all the rest equal to ��m (Aksu and Gunter,
1992). The variance of the prediction error is equal to the variance of the error
term �t�k.

Analytical derivation of the PMSE for restricted least squares methods requires
some sort of assumption on the bias of the predictor. Alternatively, it is possible
to consider empirical procedures which make use of past within sample forecast
errors at different lead times (e.g. Gardner, 1988; Taylor and Bunn, 1999). A limit
of these procedures is that they do not produce accurate estimates of prediction
intervals if only a limited number of forecast errors is available.

5.3 Other approaches

A third alternative to assuming the existence of a single true model is to use
time-varying parameters models. These are based on the coexistence of several
local models which hold at different time points. In this way, we are still relying
on the assumption that the data have been generated by a given model structure but
we make the model more flexible by allowing its parameters to vary through time,
according to a given probabilistic law. Basically, in order to obtain an estimate of
the time varying parameters, two main different approaches are feasible. The first
relies on the application of Kalman filtering techniques after that an appropriate
transition equation has been specified (e.g. Young, 1984). The second approach
uses non-parametric smoothers, such as smoothing splines and local polynomial
regression techniques, to estimate the variations in the parameters (e.g. Hastie &
Tibshirani, 1993).

The strategy of scenario forecasting is widely diffused among practitioners
in order to face model selection problems. It consists in calculating forecasts
conditional on a number of different scenarios, which are reflected in different
future values of the explanatory variables or in different model structures. This
approach can be appropriate in cases in which the analyst is interested more in
quantifying the effects of future extreme events rather than in forecasting the value
that the process is likely to assume in the next time periods.

Finally, some suggest using different models for different lead times. It has
been estabilished empirically (e.g. Gersch and Kitagawa, 1983) that the model



which works best for short term forecasting may not be so good for longer times.

6 CONCLUDING REMARKS

It should always be clear that all forecasts are based on more or less restrictive
assumptions. These assumptions are usually motivated by the prior knowledge
that the forecaster has of the system which has to be modeled and by the results
of the exploratory analysis performed on the data (plots, detection of outliers,
ACF and PACF, spectral analysis, linearity tests, etc...). Furthermore, even if the
assumptions made are true, the forecasting model can only be considered as an
useful approximate representation of the data generating process.

Provided that the identified model gives a good representation of the underly-
ing phenomenon, the quality of forecasts will then depend on the amount of in-
formation given as an input to the model and on the quality of this information. In
general, a multivariate forecasting method with many explanatory variables will
not necessarily perform better than univariate methods that use, as only source
of information, past realizations of the process which has to be forecast. When
a model contains explanatory variables, forecasts can only be made conditional
on future values of these variables which have themselves to be forecast. This
may necessitate the construction of a model introducing an additional source of
uncertainty in the forecasting process which, in many cases, can be difficult to
control. Also, the inclusion of unnecessary explanatory variables, as well as the
exclusion of relevant variables, can have a dramatic effect on the forecasting per-
formance. The identification of all the explanatory variables which are relevant
for reconstructing the future paths of the dependent variables is a delicate and,
often, not easy task. On the other hand, artificially increasing the number of re-
gressors could improve the fit but lead to poorer out of sample forecasts. So a
badly misspecified multivariate model could lead to worse forecasts than a naive
time series model. The above considerations suggest that a multivariate model
can be even more vulnerable to misspecification than an univariate one.

Similar issues arise when choosing between a complicated non-linear model
and a simple linear ARMA type structure. First, if there is no evidence of non-
linear behaviour, a non-linear model will be obviously not appropriate. Second, if
the functional form of a non-linear relation cannot be reliably identified, it could
be advisable to resort to a simpler linear model that, in any case, can be used
to obtain an approximate description of the phenomenon. Differently, a badly
misspecified non-linear model will produce misleading results. Non-parametric
methods can be a valuable tool for identifying the shape of the underlying non-
linear relationship.



Finally, where this is possible, a good practice would be that of validating
the forecasting model calculating genuine out-of-sample forecasts and not within
sample prediction errors which tend to produce an overoptimistic measure of the
forecast uncertainty.
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Härdle, W. Applied Nonparametric Regression, Cambridge University Press,
Cambridge, 1990.
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Künsch, H. R. The jackknife and the bootstrap for general stationary observations,
Annals of Statistics, 1989, 17, 1217-1241.

La Rocca, M. & Vitale, C. Boostrap inference in bilinear models, Proceedings of
the conference ”SCO 99: Complex Models and Computationally Intensive
Methods for Estimation and Forecasting”, Venezia, 27-29 September 1999,
64-79.



Li, W. K. & Lam, K. Modeling asymmetry in stock returns by a threshold ARCH
model, The Statistician, 1995, 44, 333-341.

Lütkepohl, H. Introduction to Multiple Time Series Analysis (�nd ed.), Springer-
Verlag, Heidelberg, 1993.

Masry, E. & Tjøstheim, D. Nonparametric estimation and identification of nonlin-
ear ARCH time series: strong convergence and asymptotic normality, Econo-
metric Theory, 1995, 11, 258-289.

Nisio, M. On polynomial approximation for strictly stationary processes, J. Math
Soc. Jpn, 1960, 12, 207-226.

Phillips, P. C. B. The sampling distribution of forecasts from a first order autore-
gression, Journal of Econometrics, 1979, 9, 241-261.

Piccolo, D. & Vitale, C. Metodi statistici per l’analisi economica, Il Mulino,
Bologna, 1981.

Politis, D. N. & Romano, J. P. The stationary Bootstrap, Journal of the American
Statistical Association, 1994, 89, 1303-1313.

Priestley, M. B. State-dependent models: a general approach to non-linear time
series analysis, Journal of Time Series Analysis, 1980, 1, 47-71.

Reinsel, G. Elements of Multivariate Time Series Analysis (�nd ed.), Springer,
New York, 1997.

Robinson, P.M. Non-parametric estimation for time series models, Journal of
Time Series Analysis, 1983, 4, 185-208.

Rosenblatt, M. Markov processes, structure and asymptotic behaviour, Journal of
the American Statistical Association, Springer, New York, 1971.

Rudolph, A. A central limit theorem for random coefficient autoregressive mod-
els and ARCH/GARCH models, Advances in Applied Probability, 1998, 30,
113-121.

Shao, J. & Tu, D. The Jackknife and the Bootstrap, Springer, New York, 1995.

Shumway, R. H., Azari, A. S. & Pawitan, Y. Modeling mortality fluctuations in
Los Angeles as functions of pollution and weather effects, Environmental
Research, 1988, 45, 224-241.



Storti, G., Furcolo, P. & Villani, P. Uncertainty asessment of extreme rainfall fore-
cast, Paper presented at the XXIII EGS General Assembly, Nice, 1998.

Tanizaki, H. & Mariano, R. S. Non-linear and non-Gaussian state-space modeling
with Monte Carlo simulations, Journal of Econometrics, 1998, 83, 263-290.

Taylor, J. W. & Bunn, D. W. Investigating improvements in the accuracy of predic-
tion intervals for combinations of forecasts: a simulation study, International
Journal of Forecasting, 1999, 15, 325-339.

Thombs, L. A. & Schucany, W. R. Bootstrap prediction intervals for autoregres-
sion, Journal of the American Statistical Association, 1990, 85, 486-492.

Tjøstheim, D. Non-linear time series: a selective review, Scandinavian Journal of
Statistics, 1994, 21, 97-130.

Tong, H. Non-linear time series. A dynamical system approach, Oxford University
Press, London, 1990.

Tong, H. & Lim K. S. Threshold autoregression, limit cycles and cyclical data
(with discussion), Journal of the Royal Statistical Society B, 1980, 42, 245-
292.

Tsay, R. Testing and Modelling Multivariate Threshold Models, Journal of the
American Statistical Association, 1998, 93, 1188-1202.

West, M. & Harrison, J. Bayesian Forecasting and Dynamic Models (2nd edition),
Springer, New York, 1997.

Young, P. C. Recursive Estimation and Time-Series Analysis (An Introduction),
Springer-Verlag, Berlin, 1984.


